

Fermi

Gamma-ray Space Telescope

Analysis Workshop 17 December 2009

Advanced Likelihood

E. Hays

Goals

- Quality checks on spectral fitting of point sources
 - Major gotchas
 - Simple checks
 - Models revisited
 - Spectral residuals
 - Spatial residuals
- Useful considerations
 - Impact of region selection
 - Impact of zenith angle selection (relates to above...)
 - Impact of energy selection
 - Impact of spectral model
- Binned vs. Unbinned likelihood

Major gotchas

Parameter estimate depends critically on calculating the proper exposure

selection	livetime	response	minimization
gtselect gtmkti	me gtlcube	gtexpmap	gtlike
Stocioot Stillitti	me garane	gtsrcmaps	•

- Examples of things that can screw this up
 - fselect, fcopy selections do not update the header keywords used in the exposure calculation
 - Mismatch of data and IRF set
 - Mismatch of initial ROI selection and data cube (binned)
 - Mismatch of calculated diffuse response and model diffuse components - Use different names for different models

Likelihood output - simple checks

Did the fit work and does it make sense?

- Did the minimization converge?
- Are the number of predicted photons reasonable?
- Do the parameter values make sense?
 - values hitting limits?
 - source with extremely soft spectrum or hard spectrum?
- Do the parameter errors make sense?
 - Too small? Were enough parameters left free?
 - Larger than the parameter values with low TS...better luck next time
- Consider the above for target source and field sources
- All of the above becomes more critical for faint sources, complex regions, time-binned light curves...

Likelihood - ROI selection

How big?

- Big enough to constrain model components source of interest, diffuse emission, nearby sources
- Small enough to avoid significant zenith cut losses to exposure
 - Practical advantage! less photons and less sources => less calculations for unbinned analysis
 - Analysis disadvantage! likelihood is an inclusive modeling strategy
- Recommendations
 - 10 deg for isolated point source (E>100 MeV)
 - Larger regions (15-20 deg) benefit confused sources, aid in separating diffuse at low energy, improve error estimates
- Test it
 - Are fit results reliable for different ROI radii?
 - What is the impact on GTIs?

Likelihood model - sources

What should be included?

- All sources that contribute photons to the selected region
 - Bright source list sources within ~10 deg of the ROI boundary accommodates tail of low energy PSF
 - Same goes for catalog sources once available
- Galactic diffuse model
- Isotropic diffuse model
 - Important for all parts of the sky...provides a home for residual instrumental effects NOT well modeled by the response

This is a starting point. Adapt to find what works best for your region and source.

Likelihood Model - spectra

What spectral shape?

- Power laws are simple and well defined
 - For faint sources, difficult to justify more parameters
- BUT lots of LAT sources are not simple power laws... some tips to help motivate other spectral forms
 - Bright pulsars?
 - Try simple exponentially cutoff power laws to improve fits for the pulsar itself and for nearby sources
 - Check the energy distribution for an energy-dependent ROI selection
 - Do the power-law fit parameters vary significantly for different minimum energy selections or fits in separate energy bins?
- Most accurate and unbiased way to determine spectral parameters and errors is by testing that hypothesis using the likelihood fit

Spectral Residuals

- Unbinned analysis produces predicted counts and residuals.
 Example is a long integration near the Galactic plane and a bright pulsar
- Discrepancy at low energy is typical
 - Likelihood uses true energy
- Discrepancies strongly tied to diffuse model for most analysis
 - Diffuse mediates cross talk between your source and neighbors
 - Consider relative strength and test impact of model choices and selections on source of interest

Likelihood - reality checks

Is anything missing in the model?

- Visual inspection of count maps and residuals
- Test Statistic maps (unbinned analysis)
 - gttsmap Tests hypothesis of additional point source over a grid
 - Very Calculation Intensive
 - try small regions (5 deg) and large grid spacing (0.5 deg)
 - Note this can expose deficiencies in the diffuse model in addition to evidence for an additional source
 - Warning: gttsmap is not a tool for localization, gtfindsrc does that
- Predicted and residual count maps (binned analysis)
 - Profiles, radial density, energy dependence

Likelihood - useful tests

- Overall consistency lots of good ways to get at this
- Iteration
 - Consistent results if using output model is fit model?
- Data selection consistency
 - Effects of energy selection?
 - Changes with ROI selection? (Keep in mind this also effects good time selection in combination with zenith cut)
 - Consistency with results in distinct energy bins (ala catalog)
 - Separate analysis of front and back events (using appropriate IRFs, diffuse response, and isotropic model)
 - Effects of time selection
- Fit and Minimization choices
 - Impact of starting parameter values in the model?
 - Fit tolerence? (converging to true minimum?)
 - Effects of optimizer?

Binned vs. Unbinned Likelihood

- Unbinned: Treats each photon independently (position, energy)
 - Best theoretical performance
 - More sensitive important for faint sources
 - Best option for low statistics scenarios light curves
 - Not for use with spatially extended sources
 - More difficult to diagnose problems in individual source fit
- Binned: Treats the data in bins of position and energy. Minimal criteria - more photons than bins
 - Less computationally intensive than unbinned
 - Handles templates for extended sources
 - Allows more straightforward diagnostics of fit (source maps, spatial profiles, energy dependent comparisons of prediction and model)
 - At highest energies, can run into low statistics even for long integrations

Use of both allows consistency check (for data sets where both can be reasonably used)

gtobssim

- The ultimate test...
 - Can you simulate what you found?